训练报告: 01182053_e100_w80_linear

训练环境与参数(train)
变量名 含义
time_start 开始时间 2026-01-18 20:43:36
platform 平台 Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35
processor CPU架构 x86_64
python_version Python版本 3.10.6
torch_version Torch版本 2.0.0+cu118
cuda_available CUDA可用 False
cuda_device_count GPU数量 0
cuda_device_name_0 GPU0名称 NA
device_used 使用设备 cpu
epochs 训练轮数 100
train_seconds 训练时长 9分钟27秒
threshold_default 默认阈值 0.5
pos_weight_used pos_weight 80.0
lr_init 初始学习率 0.001
optimizer 优化器 Adam
report_folder_name 报告名 01182053_e100_w80_linear
测试环境与参数(cut_test)
变量名 含义
time 记录时间 2026-01-18 20:53:26
platform 平台 Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35
processor CPU架构 x86_64
python_version Python版本 3.10.6
torch_version Torch版本 2.0.0+cu118
cuda_available CUDA可用 False
device_used 使用设备 cpu
threshold_default 默认阈值 0.5
batch_size batch_size 64
report_folder_name 报告名 01182053_e100_w80_linear
训练集曲线(epoch_metrics)
Loss
Precision / Recall / F1
AP(PR-AUC) / AUC(ROC)
Accuracy(若无则为空)
正类预测率 pos_pred_rate
学习率 lr(若无则为空)
建议阅读顺序:先看 pos_pred_rate 判断“乱报切点”程度,再看 PRF 是否平衡,最后结合 AP/AUC 评估整体质量。
训练集最终指标(train / val 汇总)
阈值 0.5
精确率 0.05399568034557235
召回率 1
F1 0.1024590163934426
准确率 0.7386634844868735
AP(PR-AUC) 0.626382807214721
AUC(ROC) 0.9919806178073894
TP 25
FP 438
TN 1213
FN 0
正类预测率 0.2762529832935561
测试集最终指标(cut_test)
阈值 0.5
精确率 0.1258278145695364
召回率 0.95
F1 0.2222222222222222
准确率 0.8488636363636364
AP(PR-AUC) 0.8607297127210171
AUC(ROC) 0.9827906976744186
TP 19
FP 132
TN 728
FN 1
正类预测率 0.1715909090909091
测试集帧轴可视化(每个视频:TP / FP / FN 的帧位置)
TP(预测=切点 且 GT=切点) FP(预测=切点 但 GT=非切点) FN(GT=切点 但 预测=非切点) 提示:鼠标悬停点可看帧号
V001.mp4
total_frames: 166  |  TP 1 FP 2 FN 0
GT cuts: 1 Pred cuts: 3
轴左侧≈frame 0 轴右侧≈frame 165
V002.mp4
total_frames: 290  |  TP 6 FP 1 FN 0
GT cuts: 6 Pred cuts: 7
轴左侧≈frame 0 轴右侧≈frame 289
V003.mp4
total_frames: 252  |  TP 4 FP 59 FN 0
GT cuts: 4 Pred cuts: 63
轴左侧≈frame 0 轴右侧≈frame 251
V004.mp4
total_frames: 77  |  TP 2 FP 11 FN 1
GT cuts: 3 Pred cuts: 13
轴左侧≈frame 0 轴右侧≈frame 76
V005.mp4
total_frames: 100  |  TP 6 FP 59 FN 0
GT cuts: 6 Pred cuts: 65
轴左侧≈frame 0 轴右侧≈frame 99
测试集数据明细(Excel 其它 Sheets 预览)
dataset_summary(显示前 11 行 / 共 11 行)
item value
num_videos 5
num_pairs 880
num_cuts 20
num_non_cuts 860
pos_ratio 0.02272727272727273
per_video_frame_stats
min_frames 77
max_frames 290
mean_frames 177
median_frames 166
per_video(显示前 5 行 / 共 5 行)
vid vid_idx total_frames gt_cut_count pred_cut_count tp fp fn gt_cuts pred_cuts
V001.mp4 0 166 1 3 1 2 0 44 19,22,44
V002.mp4 1 290 6 7 6 1 0 28,68,100,163,200,249 28,68,99,100,163,200,249
V003.mp4 2 252 4 63 4 59 0 36,152,181,205 36,64,65,66,67,68,70,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,100,102,111,114,115,116,130,132,133,134,136,138,139,140,141,142,143,144,145,146,147,148,150,152,181,182,184,190,196,198,205,222,224
V004.mp4 3 77 3 13 2 11 1 4,34,58 0,1,3,4,34,68,69,70,71,72,73,74,75
V005.mp4 4 100 6 65 6 59 0 5,12,27,46,80,88 5,9,12,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,80,88,89,90,91,92,93,94,95,96,97,98
classification_report(显示前 5 行 / 共 5 行)
text
precision recall f1-score support
Non-cut 0.9986 0.8465 0.9163 860
Cut 0.1258 0.9500 0.2222 20
accuracy 0.8489 880
下载