| 变量名 | 含义 | 值 |
|---|---|---|
time_start |
开始时间 | 2026-01-17 23:52:50 |
platform |
平台 | Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35 |
processor |
CPU架构 | x86_64 |
python_version |
Python版本 | 3.10.6 |
torch_version |
Torch版本 | 2.0.0+cu118 |
cuda_available |
CUDA可用 | False |
cuda_device_count |
GPU数量 | 0 |
cuda_device_name_0 |
GPU0名称 | NA |
device_used |
使用设备 | cpu |
epochs |
训练轮数 | 50 |
train_seconds |
训练时长 | 12小时16分钟11秒 |
threshold_default |
默认阈值 | 0.5 |
pos_weight_used |
pos_weight | 80.0 |
lr_init |
初始学习率 | 1e-3 |
optimizer |
优化器 | Adam |
report_folder_name |
报告名 | 01181209_e50_w80 |
| 变量名 | 含义 | 值 |
|---|---|---|
time |
记录时间 | 2026-01-18 12:11:09 |
platform |
平台 | Linux-5.10.134-18.0.6.lifsea8.x86_64-x86_64-with-glibc2.35 |
processor |
CPU架构 | x86_64 |
python_version |
Python版本 | 3.10.6 |
torch_version |
Torch版本 | 2.0.0+cu118 |
cuda_available |
CUDA可用 | False |
device_used |
使用设备 | cpu |
threshold_default |
默认阈值 | 0.5 |
batch_size |
batch_size | 64 |
report_folder_name |
报告名 | 01181209_e50_w80 |
pos_pred_ratelr(若无则为空)pos_pred_rate 判断“乱报切点”程度,再看 PRF 是否平衡,最后结合 AP/AUC 评估整体质量。
| 阈值 | 0.5 |
| 精确率 | 0.293103448275862 |
| 召回率 | 0.9444444444444444 |
| F1 | 0.4473684210526315 |
| 准确率 | 0.9535398230088495 |
| AP(PR-AUC) | 0.3889012188544758 |
| AUC(ROC) | 0.9569852019061952 |
| TP | 17 |
| FP | 41 |
| TN | 845 |
| FN | 1 |
| 正类预测率 | 0.06415929203539823 |
| 阈值 | 0.5 |
| 精确率 | 0.1728395061728395 |
| 召回率 | 0.7 |
| F1 | 0.2772277227722772 |
| 准确率 | 0.9461254612546125 |
| AP(PR-AUC) | 0.2152375420303426 |
| AUC(ROC) | 0.919812734082397 |
| TP | 14 |
| FP | 67 |
| TN | 1268 |
| FN | 6 |
| 正类预测率 | 0.05977859778597786 |
dataset_summary(显示前 11 行 / 共 11 行)| item | value |
|---|---|
| num_videos | 5 |
| num_pairs | 1355 |
| num_cuts | 20 |
| num_non_cuts | 1335 |
| pos_ratio | 0.01476014760147601 |
| per_video_frame_stats | |
| min_frames | 43 |
| max_frames | 700 |
| mean_frames | 272 |
| median_frames | 161 |
per_video(显示前 5 行 / 共 5 行)| vid | vid_idx | total_frames | gt_cut_count | pred_cut_count | tp | fp | fn | gt_cuts | pred_cuts |
|---|---|---|---|---|---|---|---|---|---|
| V001.mp4 | 0 | 43 | 1 | 1 | 1 | 0 | 0 | 26 | 26 |
| V002.mp4 | 1 | 161 | 2 | 5 | 1 | 4 | 1 | 86,131 | 86,96,140,154,155 |
| V003.mp4 | 2 | 122 | 5 | 19 | 5 | 14 | 0 | 18,35,56,72,105 | 18,21,23,24,25,29,35,40,42,43,44,47,48,49,52,56,72,95,105 |
| V004.mp4 | 3 | 700 | 6 | 1 | 1 | 0 | 5 | 46,419,457,504,600,643 | 643 |
| V005.mp4 | 4 | 334 | 6 | 55 | 6 | 49 | 0 | 20,69,134,169,238,263 | 12,13,14,17,18,19,20,30,31,35,36,54,55,58,59,60,61,69,79,80,100,113,121,123,124,129,130,131,132,133,134,169,173,174,176,178,183,184,198,199,224,238,263,265,272,274,276,277,280,281,282,284,324,325,329 |
classification_report(显示前 5 行 / 共 5 行)| text |
|---|
| precision recall f1-score support |
| Non-cut 0.9953 0.9498 0.9720 1335 |
| Cut 0.1728 0.7000 0.2772 20 |
| accuracy 0.9461 1355 |